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1 The Howland trial

In the 1867 trial contesting the will of Sylvia Ann Howland in New Bedford, Massachusetts,
the executor alleged that one of Howland’s signatures on a a will written in 1862 was
a tracing of her signature from an earlier page of the will. Benjamin Peirce and his
son Charles studied 42 of Sylvia Howland’s signatures, from which they estimated the
probability that corresponding “downstrokes” would agree in both length and position to
be 5,325

25,830 . Since her signature included 30 such “downstrokes,” and the disputed signature
agreed in all 30 cases with the undisputed signature, the elder Peirce concluded that the
probability that the two signatures would agree in such a way if they had been written
independently by Sylvia Howland herself was

q =
(

5, 325
25, 830

)30

≈ 2.67× 10−21.

In his comments, Peirce noted:

This number far transcends human experience. So vast an improbability is practically
an impossibility. Such evanescent shadows of probability cannot belong to actual life.
They are unimaginably less than those least things which the law cares for. (Meier
and Zabell 1980, 499)

This statement is very similar to what Émile Borel calls the single law of chance: “Phenom-
ena with very small probabilities do not occur” (Borel 1962, 1). That is, if the signature
in question is indeed that of Sylvia Howland, then we must accept that an event of ex-
ceedingly small probability has occurred. Since such events, at least in this context, are
“practically an impossibility,” we should seek elsewhere for an explanation of the similarity
between the two signatures.

Leaving aside questions about the validity of the probabilistic model employed by the
Peirces in this case, Meier and Zabell remark that the probability q which they compute
may be misinterpreted as the posterior probability of the hypothesis that Sylvia Howland
wrote both signatures.* This is in keeping with their subjectivist view of probability. From
this perspective, a probability represents the strength of one’s opinion about the truth of a
given proposition. Given a hypothesis H, in this case, the statement that Sylvia Howland
wrote both signatures, a prior probability for H and all alternatives to H, and data D,
one computes P (H|D), the posterior probability of H given the evidence D. Since this
computation is based on Bayes’ theorem, those who use a subjectivist interpretation of
probability in statistical inference are referred to as Bayesians.

* Although they do note that, in this case, with any reasonable prior probabilities, the
posterior probability will be of the same order of magnitude as the computed probability.
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Those who hold a frequentist view of probability, that is, the view that a statement of
probability is always a reference to the frequency of occurrence of some event, call q the
p-value for the test of the hypothesis H. Bayesians have criticized the use of p-values in
statistical inference on many fronts, the one mentioned by Meier and Zabell being one of
the weakest (we would have to abandon much of mathematics and statistics if we could
use only those parts which are seldom misinterpreted). Less commonly discussed are the
disagreements among frequentists themselves on how to interpret p-values.

2 Frequentist probabilities: Neyman

A frequentist interpretation of probability requires that the probability of an event A refer
in some way to the proportion of times the event A occurs in a sequence of repetitions of a
specified experiment. However, frequentists differ on what they accept as repetitions. For
Jerzy Neyman and E. S. Pearson, the founders of the principal school of modern frequentist
theories of hypothesis testing, the repetitions need not be actual, but they must at least
be potentially actual.

Neyman identifies the probability of an event A with the ratio of the measure of the
set A to that of the set which he calls the fundamental probability set (Neyman 1952, 3),
where the measure is just cardinality in the case of a finite fundamental probability set.
This at first appears to be a circular definition, in the same way as Laplace’s definition
of probability in terms of events assumed to be “également possible,” but Neyman imme-
diately counters that claim. In two examples involving a standard die, he distinguishes
between “the probability of a side of the die having six points on it,” a probability which
he claims is always 1

6 , and “the probability of getting six points on the die when the die is
thrown” (Neyman 1952, 5). He considers the latter statement ambiguous. It might refer
to a completed sequence of throws, in which case the probability is simply the ratio of the
number of observed sixes to the total number of throws; to a sequence of throws to take
place in the future, in which case the probability is unknown until the throws are actually
carried out; or to a hypothetical sequence of throws. He considers the latter to be the
most fruitful because it leads to the discussion of how to deduce various probabilities from
hypothesized values of other probabilities. As an example of this latter case, he considers
the hypothetical experiment of tossing a die n times. To say the probability of getting a
six on one throw is 1

6 then means, to Neyman, “that among the the n throws in F1 [the
fundamental probability set] there are exactly n

6 with six on the top face of the die” (Ney-
man 1952, 6). Hence, for Neyman, the probability of an event refers to the frequency with
which the event has either occurred in some sequence of repetitions, or to the frequency
with which the event will occur in a sequence of repetitions.

3 Frequentist probabilities: Pearson

If probability is nothing more than a name we give to the ratio of the number of occurrences
of an event to the total number of repetitions of some experiment, then how do we use
it to make statistical inferences when the basic data does not come from a repeatable
experiment? For example, what does probability have to say about the Howland will,
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given that the data consists of a single signature, whose creation cannot be repeated?
Pearson, in a discussion of 2× 2 contingency tables, attempts an explanation:

It seems clear that in certain problems probability theory is of value because of its
close relation to frequency of occurrence . . . In other and, no doubt, more numerous
cases there is no repetition of the same type of trial or experiment, but all the same
we can and many of us do use the same test rules to guide our decision, following
the analysis of an isolated set of numerical data. Why do we do this? What are the
springs of decision? Is it because the formulation of the case in terms of hypothetical
repetition helps to that clarity of view needed for sound judgement? Or is it because
we are content that the application of a rule, now in this investigation, now in that,
should result in a long-run frequency of errors in judgement which we control at a
low figure? (Pearson 1947, 142)

Although he protests that “I should not care to dogmatize,” it is clear from these statements
and what follows that Pearson considers a probability statement in a singular situation to
have two possible meanings: (1) a way of providing a paradigm to guide our thinking, or
(2) one event in a sequence of events in which the individual, or, perhaps, the community,
will make statistical decisions. The latter view is very reminiscent of the position of C. S.
Peirce in his early writings.

4 Frequentist probabilities: Peirce

In his 1878 paper “The Doctrine of Chances,” Peirce states:

According to what has been said, the idea of probability essentially belongs to a kind
of inference which is repeated indefinitely. An individual inference must be either
true or false, and can show no effect of probability; and, therefore, in reference to a
single case considered in itself, probability can have no meaning. Yet if a man had
to choose between drawing a card from a pack containing twenty-five red cards and a
black one, or from a pack containing twenty-five black cards and a red one, and if the
drawing of a red card were destined to transport him to eternal felicity, and that of a
black one to consign him to everlasting woe, it would be folly to deny that he ought
to prefer the pack containing the larger proportion of red cards, although, from the
nature of the risk, it could not be repeated. (Peirce 1992b, 147)

Peirce concludes that “[i]t is not easy to reconcile this with our analysis of the conception
of chance” (Peirce 1992b, 147), and in fact he is able to reconcile the two only by enlarging
the interests of the individual to include the interests of the community:

But what, without death, would happen to every man, with death must happen to
some man. At the same time, death makes the number of our risks, of our inferences,
finite, and so makes their mean result uncertain. The very idea of probability and
of reasoning rests on the assumption that this number is indefinitely great. . . . It
seems to me that we are driven to this, that logicality inexorably requires that our
interests shall not be limited. They must not stop at our own fate, but must embrace
the whole community. . . . Logic is rooted in the social principle. (Peirce 1992b, 149)
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This narrow view of frequencies formulated by Neyman, Pearson, and Peirce in his early
years, involving only sequences which are actually or potentially instantiated, fits well with
the prototype of Neyman-Pearson statistical inference, quality control sampling. If θ is
some measurable characteristic of an object manufactured in an assembly line setting, one
may set up a fixed testing procedure which will result in incorrect inferences (the type I
and type II errors, the inference that the process is not within the control bounds when it
in fact is, and the inference that the process is within the control bounds when it in fact
is not, respectively) with known probabilities. In such a situation the license for, and the
consequences of, the inferences are clear: a known percentage of all the inferences made
will be in error. But the situation is not so clear when the same ideas are applied to
scientific inferences, inferences about the state of nature. In this realm repetitions, even
if possible, are not intended. The goal is not to minimize risk through adjustments of
testing parameters to control the frequency of type I and type II errors, but to make a
statement of fact about the world. Neyman, Pearson, and Peirce are aware of this weakness
in their conception of frequencies, and so Neyman prefers to speak of “inductive behavior”
instead of “inductive inference” (see Neyman and Pearson 1933, 291, and Neyman 1950,
1) and Pearson speaks of statistical testing procedures as a guide to our decisions, or, with
Peirce, treats an individual inference as but one among all the inferences made by a larger
community.

In his later writings, Peirce recognized the deficiencies in his original view of frequencies.
In a letter to Paul Carus in 1910, Peirce considers what is meant by the statement that
the probability of obtaining a three or a six on the roll of a die is 1

3 :

I mean, of course, to state that the die has a certain habit or disposition of behaviour
in its present state of wear. It is a would be and does not consist in actualities of single
events in any multitude finite or infinite. Nevertheless a habit does consist in what
would happen under certain circumstances if it should remain unchanged throughout
an endless series of actual occurrences. I must therefore define that habit of the die
in question which we express by saying that there is a probability of 1

3 (or odds of
1 to 2) that if it be thrown it will turn up a number divisible by 3 by saying how it
would behave if, while remaining with its shape, etc. just as they are now, it were to
be thrown an endless succession of times. (Peirce 1958, 8.225)

Earlier in this same letter, Peirce declares that the “principal positive error” in his early
essays “The Fixation of Belief” and “How to Make Our Ideas Clear” is their nominalism.
In particular, he claims that:

I must show that the will be’s, the actually is’s, and the have beens are not the sum of
the reals. They only cover actuality. There are besides would be’s and can be’s that
are real. (Peirce 1958, 8.216)

Thus Peirce now sees a statement of probability as a statement of the inclination of a
mechanism to behave in a certain way under certain circumstances. This inclination, a
propensity or habit, is a real property, and would reveal itself in an endless sequence of
identical repetitions, although such repetitions are physically impossible. Indeed, if pushed
to the limit, no experiment, not even the simple one of throwing a die, is repeatable even
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a finite number of times, for, if nothing else, the die thrown on the second toss is not
identical to the die thrown on the first toss.

5 Frequentist probabilities: Fisher

R. A. Fisher, the geneticist and founder of the modern frequentist theory of statistical
inference, gives an account of probability which has much in common with that of Peirce’s
later view. Although Fisher talks of probabilities in terms of frequencies, it is clear that
the frequencies do not refer to actual sequences or even potentially actual sequences. For
example, Fisher prefaces his 1925 paper “Theory of Statistical Inference” with the following
comments:

If, in a Mendelian experiment, we say that the probability is one half that a mouse
born of a certain mating shall be white, we must conceive of our mouse as one of
an infinite population of mice which might have been produced by that mating. The
population must be infinite for in sampling from a finite population the fact of one
mouse being white would affect the probability of others being white, and this is
not the hypothesis that we wish to consider; moreover, the probability might not
always be a rational number. Being infinite the population is clearly hypothetical,
for not only must the actual number produced by any parents be finite, but we might
wish to consider the possibility that the probability should depend on the age of
the parents, or their nutritional conditions. We can, however, imagine an unlimited
number of mice produced upon the conditions of our experiment, that is, by similar
parents, of the same age, in the same environment. The proportion of white mice in
this imaginary population appears to be the actual meaning to be assigned to our
statements of probability. (Fisher 1925, 700)

Fisher is thinking along the same lines as Peirce, his “unlimited number of mice produced
upon the conditions of our experiment” corresponding to the results from Peirce’s die if,
“while remaining with its shape, etc. just as they are now, it were to be thrown an endless
succession of times.”

It is not surprising then that Fisher rejects the Neyman-Pearson interpretation of sta-
tistical inferences. In discussing a hypothesis concerning the random distribution of stars,
Fisher says,

The force with which such a conclusion is supported is logically that of the simple
disjunction: Either an exceptionally rare chance has occurred, or the theory of random
distribution is not true. (Fisher 1973, 42)

Using logic similar to that used by Benjamin Peirce in the Howland will case, Fisher
argues that, when the supposition of a certain hypothesis implies that an event of small
probability has occurred, the rational reaction is to seek an explanation elsewhere. The
license for such an inference lies not in the rate of errors which we will commit using such
a reasoning procedure, but in the nature of our understanding of what constitutes a small
probability.
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6 Deborah Mayo and error statistics

Deborah Mayo’s error statistics is, in part, a vigorous defense of the frequentist point of
view in statistical inference. Her work has not only revealed serious shortcomings in the
Bayesian approach, but has provided insightful replies to Bayesian criticisms of frequentist
statistics. Her arguments are grounded in a reinterpretation of the Neyman-Pearson school
of frequentist statistics, a reinterpretation more heavily influenced by Pearson than by
Neyman.

Mayo jettisons the rigid decision-theoretic machinery of the fully developed Neyman-
Pearson school (such as fixed critical regions and randomized tests) in favor of a more
flexible inference scheme centered on her notion of severity. Considering a hypothesis H
and given data x, Mayo says,

Hypothesis H passes a severe test with x if, (i) x agrees with H (for a suitable
notion of agreement), and (ii) with very high probability, test T would have produced
a result that fits H less well than x does, if H were false or incorrect, or equivalently,
(ii’) with very low probability, test T would have produced a result that fits H as well
as (or better than) x does, if H were false or incorrect. (Mayo and Spanos 2000, 7)

In the simplest situation, that of testing the value of a single parameter, we may summarize
the idea of severity as follows: Let Θ ⊂ R (the set of real numbers) and, for fixed θ ∈ Θ,
suppose X1, X2, . . . ,Xn is a random sample with joint probability measure Pθ. Moreover,
consider a function

T : Rn ×Θ→ R

which, for fixed (x1, x2, . . . , xn) ∈ R
n and θ ∈ Θ, measures the “goodness-of-fit” of

x1, x2, . . . , xn to θ in the sense that we expect T (x1, x2, . . . , xn; θ0) to be near 0 when θ = θ0,
T (x1, x2, . . . , xn; θ0) < 0 when θ < θ0, and T (x1, x2, . . . , xn; θ0) > 0 when θ > θ0. For ex-
ample, if X1, X2, . . . ,Xn are independent Bernoulli random variables with P (Xi = 1) = θ
and P (Xi = 0) = 1− θ for i = 1, 2, . . . , n and some fixed 0 ≤ θ ≤ 1, then we might define

θ̂(X1, X2, . . . ,Xn) =
1
n

n∑
i=1

Xi,

the maximum likelihood estimator for θ, and let

T (x1, x2, . . . , xn; θ) = θ̂(x1, x2, . . . , xn)− θ.

For given observations x1, x2, . . . , xn of X1, X2, . . . ,Xn, we say the hypothesis H : θ < θ0

passes a severe test if

Pθ0(T (X1, X2, . . . , Xn; θ0) ≤ T (x1, x2, . . . , xn; θ0))

is “small” (that is, we could reject the hypothesis H ′ : θ ≥ θ0), and we say a hypothesis
H : θ > θ0 passes a severe test if

Pθ0(T (X1, X2, . . . , Xn; θ0) ≥ T (x1, x2, . . . , xn; θ0))
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is “small” (that is, we could reject the hypothesis H ′ : θ ≤ θ0). In both cases, one minus
the given probability is the severity of the test.

The line of argument is, for example: If the inference that θ < θ0 is in error, then θ ≥ θ0;
but if we find that the probability of observing our data, under the assumption that θ ≥ θ0

is true, is small, then we should rule out θ ≥ θ0 as not conforming to observation. But
what is it about the small probability that licenses this inference? Mayo is never explicit
about her notion of frequency, but, in the context of justifying the use of the apparently
behavioristic schema of the Neyman-Pearson approach in scientific inference, she is thinking
along the lines of Pearson:

Why are NP methods so productively used in science despite their “rule of behavior”
formulation? How, paraphrasing Neyman, do they manage to correspond precisely
to the needs of applied research? There seem to be two main reasons: First, many
scientific tasks fit the “assembly line” behavioral-decision model. At many junctures
in the links between experimental and data models there is a need for standardized
approaches to data analysis that allow us to get going with few assumptions, enable
results to be communicated uniformly, and help ensure that we will not too often err in
declaring “normal puzzles” solved or not. Second, the behavioral decision approach
provides canonical models for nonbehaviorial and non-decision-theoretic uses. The
behavioral concepts simply serve to characterize the key features of the NP tools, and
these features are what enable them to perform the nonbehaviorial tasks to which
tests are generally put in science. (Mayo 1996, 374-5)

The problem with this approach is that it ultimately reduces scientific inference to
reasoning by analogy. For example, suppose we have 30 independent Bernoulli trials, each
with probability of success θ. If we observe 15 successes and wish to test the hypothesis
H0 : θ ≤ 1

5 , we obtain a p-value of at most

q = P

(
θ̂(X1,X2, . . . , X30) ≥ 1

2

∣∣∣ θ =
1
5

)
= P

(
X1 +X2 + · · ·+X30 ≥ 15

∣∣∣ θ =
1
5

)
=

30∑
i=15

(
1
5

)i(4
5

)30−i

≈ 0.00023.

Mayo would say that the hypothesis H : θ > 1
5 has passed a severe test since q is so

small, on the order of 2 chances out of 10,000. If our data were coming from an assembly
line (say, the number of defective widgets in a batch of 30), then we could reason that if
H0 were indeed true, then we would be committing the error of accepting H when it is
false no more than 2.3 times out of every 10,000 such inferences. However, suppose that
we are considering the Howland will and that the Peirces had found, not 30 agreements
in “downstrokes,” but only 15. Now we are in a singular case, and if we reject H0, we
cannot say that we are making an inference which fails to be true in no more 2.3 out of
every 10,000 such inferences. In Mayo’s approach, we can say only that our inference is
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analogous to the inference we could make in the assembly line case. With Pearson (or with
Peirce in his early years), we could say that, as part of the community of rational beings,
we are making an inference of a style which will fail to be true no more than 2.3 out of
every 10,000 such inferences, but Mayo does not want to pursue that line of thought.

7 Small probabilities

The force of the argument in the previous example comes from Fisher’s disjunction and
Borel’s single law of chance: Either H0 is true and we have observed an event of very small
probability, or H0 is false. Since “[p]henomena with very small probabilities do not occur,”
it is rational to conclude that H0 is false. Of course, events of very small probability
do occur, and, consequently, this attempt to justify statistical inference has often been
dismissed. Fisher himself admits that “the ‘one chance in a million’ will undoubtedly
occur, with no less and no more than its appropriate frequency, however surprised we may
be that it should occur to us” (Fisher 1971, 13-4). Borel is well aware that events of
even fantastically small probabilities do occur and discusses in detail the contexts in which
events of differing degrees of small probability might be deemed negligible.

One common form of criticism assumes that there is a fixed value (often taken to be
0.05) below which all probabilities are considered to be small for the purposes of statistical
inference. But Fisher is very critical of those who would hold to a fixed level of significance
for rejecting hypotheses: “. . . for in fact no scientific worker has a fixed level of significance
at which from year to year, and in all circumstances, he rejects hypotheses; he rather gives
his mind to each particular case in the light of his evidence and his ideas” (Fisher 1973,
45). Moreover, for Fisher, as opposed to the Neyman-Pearson decision-theoretic school,
the decision on what constitutes a small probability in a given situation is not a matter of
the perceived risks involved, for scientific research is

an attempt to improve public knowledge undertaken as an act of faith to the effect
that, as more becomes known, or more surely known, the intelligent pursuit of a great
variety of aims, by a great variety of men, and groups of men, will be facilitated. We
make no attempt to evaluate these consequences, and do not assume that they are
capable of evaluation in any sort of currency. (Fisher 1955, 77)

Another criticism of Fisher’s disjunction is the claim that it does not account for the
relative likelihood of rival hypotheses. This appears to be Mayo’s primary objection to
Fisher’s approach to statistical inference. In a discussion of Pearson’s response to Fisher’s
criticisms of the Neyman-Pearson approach, Mayo says that Pearson’s “original heresy”
(from the Fisherian model of statistical inference) was

the break Pearson made (from Fisher) in insisting that tests explicitly take into ac-
count alternative hypotheses, in contrast with Fisherian significance tests, which did
not. With just the single hypothesis (the null hypothesis) of Fisherian tests, the re-
sult is either reject or fail to reject according to the significance level of the result.
However, just the one hypothesis and its attended significance level left too much
latitude in specifying the test, rendering the result too arbitrary. With the inclusion
of a set of admissible alternatives to H, it was possible to consider type II as well as
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type I errors, and thereby to constrain the appropriate tests. (Mayo 1996, 381)

Richard Royall uses the following example to illustrate the point (Royall 1997, 67): Suppose
I am presented with an urn containing 100 balls. Letting ω represent the number of white
balls in the urn, I propose to test the hypothesis H : ω = 2 by drawing one ball out of
the urn. Since the probability of drawing a white ball is only 0.02 if H is in fact true, the
fact of drawing a white ball provides evidence, under Royall’s reading of Fisher, that H is
false. Royall counters that the 0.02 tells us nothing of the strength of our argument in the
absence of any information about possible alternative hypotheses. Mayo would agree; in
the absence of any knowledge of alternative hypotheses, we cannot say that the inference
“H is false” has passed a severe test (since it is not possible to determine if the data is
consistent with the conclusion that H is false, and so we cannot verify part (i) of the
definition of a severe test). For example, Royall says, suppose there were only two urns
from which to choose, one containing two white balls and the other containing no white
balls. In that case, drawing a white ball is in fact conclusive evidence that I am drawing
from the urn with two white balls. Mayo would concur, for now H has in fact passed a
severe test.

Royall argues that the mistake in Fisher’s logic stems from considering the probability
of the data given H in isolation from the probability of possible alternative hypotheses.
That is, although drawing a white ball is rare under H, it is even rarer (in fact, impossible)
under the only viable alternative. Mayo, along with Neyman and Pearson, would say that
we must first identify alternative hypotheses which are compatible with the data before
we make inferences about H. But there is no mistake in Fisher’s logic. We often know
little about the possible states of a physical system. Given that this urn has yielded a
white ball from a single draw, and in the absence of further knowledge, it is reasonable to
infer that more than 2% of the balls in the urn are white, although, with Fisher, we must
understand that “conclusions drawn by a scientific worker from a test of significance are
provisional, and involve an intelligent attempt to understand the experimental situation”
(Fisher 1955, 74). However, if we indeed have further knowledge, that is, that we are
drawing from one of only two urns and that the second has no white balls, then Fisher’s
disjunction still holds, only now logic forces us to the first disjunct, that is, H is true and
a rare event has occurred. The additional knowledge enables deductive logic to intercede
and compel us to conclude that a rare event has indeed occurred. Royall’s mistake is to
assume that a p-value is to be interpreted as some absolute measure of the evidentiary
weight of the data. But in fact, the experimenter must evaluate the p-value of her test,
in light of Fisher’s disjunction and the context of the experiment, anew each time she
investigates a hypothesis.

It also follows that if small probabilities do not occur and the hypothesis H is in fact
false, we should be able to design an experiment which will reject H almost without fail.
As Fisher says, “we may say that a phenomenon is experimentally demonstrable when
we know how to conduct an experiment which will rarely fail to give us a statistically
significant result” (Fisher 1971, 14). For the example above, such an experiment would
involve taking a much larger sample than a single ball. Indeed, the experiment of the
example is almost worthless for testing H, for, most of the time, the sample will consist
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of a single non-white ball, providing no realistic support for or against H. As much as
some will insist that we draw definite conclusions from whatever bit of data might come
our way, it is clear that this is not always possible. In this example, the only way that any
useful conclusion might be drawn from observing a single ball is if that ball is white, in
which case there is no need of statistics of any school.

The above is all part of the oft repeated criticism of Fisher that his methodology does
not consider the power of a statistical test (that is, the probability of rejecting a specified
hypothesis when it is false). But the design of experiments is a central part of his statistical
theory, and the design of experiments is, in large, about how to set up tests which will
realistically discriminate between various alternatives to the hypothesis being tested. Much
of the confusion on this issue stems from Fisher’s care in always phrasing his conclusions
in terms of the evidence against a proposed hypothesis, and never in terms of accepting
one hypothesis over another:

[I]t is a fallacy . . . to conclude from a test of significance that the null hypothesis is
thereby established; at most it may be said to be confirmed or strengthened. (Fisher
1955, 73)

In a sense, Mayo’s notion of severity and, similarly, the Neyman-Pearson notion of power,
interchange the roles of the inference “H is true” and the inference “H is false.” That is,
Mayo will say that H has passed a severe test if, in part, we can reject the conclusion that
H is false. I see nothing in this that Fisher would find objectionable, nor do I see anything
that requires the decision-theory analogies of the Neyman-Pearson philosophy of statistics.

8 Conclusion

In a conversation with Morris DeGroot, David Blackwell relates how a conversation with
L. J. Savage led to his conversion to subjective probability and Bayesian statistics. An
economist at Rand had approached Blackwell and asked him how one would go about
estimating the probability that there would be a major war within the next five years
(an estimate the economist needed to help with the allocation of the Air Force research
budget). Blackwell glibly responded,

that question doesn’t make sense. Probability applies to a long sequence of repeatable
events, and this is clearly a unique situation. The probability is either 0 or 1, but we
won’t know for five years . . . (DeGroot 1986, 44)

The economist responded that several other statisticians had given him the same reply.
Blackwell was uncomfortable with his response, “a frivolous, sort of flip, answer” to a
serious question and, after a subsequent conversation with Savage, started thinking in
terms of the personal probability of deFinetti.

Under a strict, nominalist interpretation of frequencies in a sequence of repeatable ex-
periments, we can never really speak of any probabilities other than 0 or 1. For, just as
Heraclitus found he could not step into the same river twice, we can never roll the same
die twice. If we do speak of relative frequencies in the sense of Neyman, then the ground
for our inferences outside of the decision-theory framework seems weak, being little more
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than a general guide to what would be the case if we were in the realm of “assembly line”
statistics. No wonder many probabilists and statisticians have, like Blackwell, turned to
Bayesian methodology to find a foundation for their work.

Mayo has made a major contribution to the understanding of frequentist statistics with
her deft descriptions and explanations of how positive knowledge may be built up from
what at first appears to be an essentially negative idea, that of the rejection of a hypothe-
sis. Fisher called attention (in his usual forceful way) to the problem of reaching positive
conclusions from negative results when he called into question the conclusions of those
investigating causal links between smoking and lung cancer. In his letters to the British
Medical Journal (Fisher 1957a and 1957b), Fisher emphasizes that the rejection of the
hypothesis of no association between rates of smoking and rates of lung cancer does not
imply that smoking is the cause of lung cancer; rather, it shows what other hypotheses
(for example, that perhaps there is a genetic component to both) must now be investi-
gated. Mayo has provided a conceptual framework, along with examples from the work of
scientists, on exactly how, contrary to the claims of the Bayesian school, one might use
frequentist statistics to carry out such project. Yet to get such a project off the ground,
one must understand how it is that small probabilities provide a license for statistical
inference. I suggest that the Neyman-Pearson framework is not strong enough to carry
the burden, and that one must develop a more robust concept of frequencies, such as that
described in Peirce’s later work, to support the work of frequentist statistics.
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